Health

Neighborhood socioeconomic status is associated with low diversity gut microbiomes and multi-drug resistant microorganism colonization

  • Buettgens, M., Blavin, F. & Pan, C. The affordable care act reduced income inequality in the US. Health Aff. 40, 121–129 (2021).

    Article 

    Google Scholar
     

  • Chen, E. & Miller, G. E. Socioeconomic status and health: mediating and moderating factors. Annu. Rev. Clin. Psychol. 9, 723–749 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Stormacq, C., Van Den Broucke, S. & Wosinski, J. Does health literacy mediate the relationship between socioeconomic status and health disparities? Integrative review. Health Promot. Int. 34, E1–E17 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lantz, P. M. et al. Socioeconomic factors, health behaviors, and mortality: results from a nationally representative prospective study of US adults. J. Am. Med. Assoc. 279, 1703–1708 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Narcisse, M. R. et al. Food insecurity and depression among low-income adults in the USA: does diet diversity play a role? Findings from the 2013-2014 National Health and Nutrition Examination Survey. Public Health Nutr. 24, 1877–1888 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Boylan, J. M. & Robert, S. A. Neighborhood SES is particularly important to the cardiovascular health of low SES individuals. Soc. Sci. Med. 188, 60–68 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, G. W. & Kantrowitz, E. Socioeconomic status and health: the potential role of environmental risk exposure. Annu. Rev. Public Health 23, 303–331 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Dowd, J. B. & Renson, A. “Under the Skin” and into the gut: social epidemiology of the microbiome. Curr. Epidemiol. Rep. 5, 432–441 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herd, P., Palloni, A., Rey, F. & Dowd, J. B. Social and population health science approaches to understand the human microbiome. Nat. Hum. Behav. 2, 808–815 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Human Microbiome Project Consortium, T. Structure, function and diversity of the healthy human microbiome. Nature 486 (2012).

  • Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature https://doi.org/10.1038/s41586-021-03986-2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forbes, J. D., Van Domselaar, G. & Bernstein, C. N. The gut microbiota in immune-mediated inflammatory diseases. Front. Microbiol. 7, 1081 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinninella, E. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7, 14 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Amelio, P. & Sassi, F. Gut microbiota, immune system, and bone. Calcif. Tissue Int. 102, 415–425 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Adler, N. E. & Newman, K. Socioeconomic disparities in health: pathways and policies. Health Aff. 21, 60–76 (2002).

    Article 

    Google Scholar
     

  • Harrison, C. A. & Taren, D. How poverty affects diet to shape the microbiota and chronic disease. Nat. Rev. Immunol. 18, 279–287 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, Z. D. et al. Structural racism and health inequities in the USA: evidence and interventions. Lancet 389, 1453–1463 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Flaskerud, J. H. & Delilly, C. R. Social determinants of health status. Issues Ment. Health Nurs. 33, 494–497 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saiz, A. M. et al. Food insecurity and cardiovascular health: findings from a statewide population health survey in Wisconsin. Prev. Med. 93, 1–6 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bixby, M. et al. Individual nutrition is associated with altered gut microbiome composition for adults with food insecurity. Nutrients 14, 1–16 (2022).

    Article 

    Google Scholar
     

  • World Health Organization, World Organization for Animal Health & Food and Agriculture Organization of the United Nations. Global Framework for Development & Stewardship to Combat Antimicrobial Resistance Draft. (2018).

  • Eggers, S. et al. Urinary lead level and colonization by antibiotic resistant bacteria. Environ. Epidemiol. 5, e175 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, G. E. et al. Lower neighborhood socioeconomic status associated with reduced diversity of the colonic microbiota in healthy adults. PLoS One 11, e0148952 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowyer, R. C. E. et al. Socioeconomic status and the gut microbiome: a twinsuk cohort study. Microorganisms 7, 1–20 (2019).

    Article 

    Google Scholar
     

  • He, Y. et al. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome 6, 1–12 (2018).

    Article 

    Google Scholar
     

  • Collignon, P. & Beggs, J. J. Socioeconomic enablers for contagion: factors impelling the antimicrobial resistance epidemic. Antibiotics 8, 1–9 (2019).

    Article 

    Google Scholar
     

  • Amato, K. R. et al. The human gut microbiome and health inequities. Proc. Natl. Acad. Sci. USA 118, 1–10 (2021).

    Article 

    Google Scholar
     

  • Nieto, F. J. et al. The Survey of the Health of Wisconsin (SHOW), a novel infrastructure for population health research: rationale and methods. BMC Public Health 10, 785 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggers, S. et al. Wisconsin microbiome study, a cross-sectional investigation of dietary fibre, microbiome composition and antibiotic-resistant organisms: Rationale and methods. BMJ Open 8, 1–8 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nilsson, P. & Laurell, M. H. Impact of socioeconomic factors and antibiotic prescribing on penicillin-non-susceptible Streptococcus pneumoniae in the city of Malmö. Scand. J. Infect. Dis. 37, 436–441 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Christian, V. J., Miller, K. R. & Martindale, R. G. Food Insecurity, Malnutrition, and the Microbiome. Curr. Nutr. Rep. 9, 356–360 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. M. et al. Twenty important research questions in microbial exposure and social equity. mSyst. 7, e0124021 (2022).

    Article 

    Google Scholar
     

  • McBurney, M. I. et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr. 149, 1882–1895 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallianou, N., Stratigou, T., Christodoulatos, G. S. & Dalamaga, M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr. Obes. Rep. 8, 317–332 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 1–19 (2017).

    Article 

    Google Scholar
     

  • Rodrigues, V. F. et al. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front. Immunol. 13, 1–8 (2022).

    Article 

    Google Scholar
     

  • Jayachandran, M., Chung, S. S. M. & Xu, B. A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health. Crit. Rev. Food Sci. Nutr. 60, 2265–2276 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, K. & Rao, A. Probiotics: a potential immunomodulator in COVID-19 infection management. Nutr. Res. 87, 1–12 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colston, J. M. et al. Intestinal colonization with bifidobacterium longum subspecies is associated with length at birth, exclusive breastfeeding, and decreased risk of enteric virus infections, but not with histo-blood group antigens, oral vaccine response or later growth in T. Front. Pediatr. 10, 59 (2022).

    Article 

    Google Scholar
     

  • Watson, A.R. et al. Metabolic independence drives gut microbial colonization and resilience in health and disease. Genome Biol. 24, 78 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genton, L., Cani, P. D. & Schrenzel, J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 34, 341–349 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, W. et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373, 813–818 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pampel, F. C., Denney, J. T. & Krueger, P. M. Obesity, SES, and economic development: a test of the reversal hypothesis. Soc. Sci. Med. 74, 1073–1081 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Duin, D. & Paterson, D. L. Multidrug-resistant bacteria in the community: trends and lessons learned. Infect. Dis. Clin. North Am. 30, 377–390 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Lodovico, S. et al. Spread of multidrug-resistant microorganisms. Antibiotics 11, 832 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safdar, N. & Bradley, E. A. The risk of infection after nasal colonization with staphylococcus aureus. Am. J. Med. 121, 310–315 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Lapidot, Y. et al. Socioeconomic disparities and household crowding in association with the fecal microbiome of school-age children. NPJ Biofilms Microbiomes 8, 1–12 (2022).

    Article 

    Google Scholar
     

  • Serra-Burriel, M. et al. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: systematic review and meta-analysis. PLoS One 15, e0227139 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montiel, L. M., Nathan, R. P. & Wright, D. J. An update on Urban Hardship. The Nelson A. Rockefeller Institute of Goverment (2004).

  • Shih, M., Dumke, K. A., Goran, M. I. & Simon, P. A. The association between community-level economic hardship and childhood obesity prevalence in Los Angeles. Pediatr. Obes. 8, 411–417 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laxy, M., Malecki, K. C., Givens, M. L., Walsh, M. C. & Nieto, F. J. The association between neighborhood economic hardship, the retail food environment, fast food intake, and obesity: findings from the Survey of the Health of Wisconsin Disease epidemiology – Chronic. BMC Public Health 15, 1–10 (2015).

    Article 

    Google Scholar
     

  • Malecki, K. M. C. et al. The Survey of the Health of Wisconsin (SHOW) Program: An infrastructure for Advancing Population Health Sciences. medRxiv Prepr. 1–38 (2021). https://doi.org/10.1101/2021.03.15.21253478.

  • Bowman SA, Clemens JC, Friday JE, Lynch KL, and M. A. Food Patterns Equivalents Database: Methodology and User Guide (Online). Food Surveys Research Group, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland. (2017). Available at: http://www.ars.usda.gov/nea/bhnrc/fsrg.

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).

    Article 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article 

    Google Scholar
     

  • McMurdie, P. J., Holmes, S., Kindt, R., Legendre, P. & O’Hara, R. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, N. M., Proctor, Di. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).

    Article 

    Google Scholar
     

  • Shannon, C. E. & Weaver, W. The Theory of Mathematical Communication. Int. Bus 131, 164–74 (1949).


    Google Scholar
     

  • Simpson, E. Measurment of diversity. Nature 163, 688 (1949).

    Article 

    Google Scholar
     

  • Buchanan, E. M. MeMoBootR (Computer Program). (2018).

  • Lin, H. & Peddada, S. Das. analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 1–11 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).

    Article 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button